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A numerical method is presented for the calculation of the diffusion of high energy electrons 
in a heterogeneous medium. It forms a numerical solution to Fermi’s diffusion equation for 
multiple Coulomb scattering. This equation is used in the simulation applications of electron 
beams. This method approximates the directional distribution of the electrons by a Gaussian 
function multiplied by a linear combination of the corresponding Hermite polynomials. 
0 1989 Academic Press. Inc. 

1. INTRODUCTION 

For the calculation of the absorbed dose in clinical applications of electron 
beams, the most popular methods are based on the convolution of pencil 
beams [ 1,2]. The spatial distribution needed in the convolution procedure can be 
derived from measurements, from Monte Carlo calculations, or from analytical 
calculations. Measurements of the distribution of very thin electron beams were 
performed by Lax [3]. Monte Carlo calculation of the diffusion of pencil beams in 
a homogeneous medium were performed by Andre0 and Brahme [4] and Berger 
and Seltzer [S]. An analytical expression based on a theoretical model of Fermi for 
multiple Coulomb scattering was given by Rossi and Greisen [6] for the case in 
which the energy of the electrons remains constant. Later this expression was 
generalized by Eyges [7] for the case in which the energy decreases with the 
depth z. 

This Fermi-Eyges theory gives a rough description of the total scattering process 
only. For instance, it does not take into account large angle scattering and 
secondary electrons and uses implicitly the approximation tg 8 rk: 8. Nevertheless, 
the analytical expression given by this theory has been successfully applied in the 
pencil beam method for the prediction of dose distribution in a patient [S, 91. The 
pencil beam method can be split into two parts. One part is the calculation of the 
energy decrease; the other part is the calculation of the diffusion due to multiple 
scattering in the medium. This paper is dedicated to the second part: the diffusion 
due to multiple scattering in a heterogeneous medium. 
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FIG. 1. A broad beam of electrons can be understood as a collection of ray beams. Each ray beam 
becomes broader in the medium as a result of scattering and forms a so-called pencil beam. In the 
medium the electron flux distribution is then computed by convolution of these pencil beams over the 
field defined by the collimating device. A strong limitation of this “pencil beam method” is that a pencil 
beam whose axis does not cross a block of different material, as depicted in the figure, will not be 
influenced by this block. If its axis crosses the block then the pencil beam “sees” it as an infinite slab. 

In the pencil method a slab-geometry is assumed for each pencil beam; i.e., each 
individual pencil beam diffuses in the material along its axis. Thus, for example, the 
pencil beam shown in Fig. 1 will not “see” the block of different material. However, 
in clinical practice the slab-geometry cannot be assumed. This explains the differen- 
ces between calculation and measurement as reported in [l&12]. To avoid this 
restriction, a numerical method has been developed by Storchi and Huizenga [13] 
to solve directly the equation of Fermi, as described in [6, 71, for a broad beam. 
This method uses the first three directional moments of the electron distribution at 
each point in the medium. In this paper a mathematical generalization of that 
method will be given for an arbitrary number of moments. Here too, only the 
scattering part will be considered. In order to give some introductory information, 
the theory of Fermi and the pencil beam solution will be reviewed briefly in the 
next section. 

2. FERMI THEORY AND SOLUTION OF THE PENCIL BEAM 
FOR THE SLAB-GEOMETRY 

The Fermi theory for the diffusion of electrons in a medium has been described 
by Rossi and Greisen [6]. The assumption of the model is resumed in the equation 

F(z + 6, r, co) = J F(z, r-h, o’) pa(m’ -+ co) do’ + O(J2), (1) 
R 
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where F is the distribution (planar fluence) of the electrons as a function of depth z, 
lateral position r = (x, JJ) and direction o = (f3,, 6,). 8, and 8, are the projected 
angles [6] and D denotes the space of all values of CO. O(6’) is an unknown term 
of order 6*. pa(o + CO) is the scattering function that describes the multiple scattering 
of the electrons in a slab of thickness 6. 

Rossi and Greisen did not use an explicit expression for pa but defined it by its 
first three moments, 

i 
psdo=l (2) 

R 

s p,odo=O (3) 
R 

I 
pso2 do = T6, (4) 

R 

where T is the linear angular scattering power (rad2 cm-‘) [ 143. T is defined as the 
increase of the variance of the directional (or angular) distribution of a thin, near 
mono-directional beam crossing a unit slab of material. T depends on the kind of 
material and on the energy of the electrons. 

Using in (1) a Taylor expansion relative to w and r and Eqs. (2) (3), and (4) 
and decreasing 6 to zero, we get 

In the case of a slab-geometry and with some simplification with respect to the 
energy, the scattering power T depends on the depth z only. In this case the 
solution of (5) has been given by Eyges [7] for a point mono-directional source 

F(z, x, Y, ox, $I= F(z, x, 0,) F(z, Y, &I (6) 

1 
F(z, x, Ox)= Qn(A,A1 +p))l/2 exp 

A,x*+2A,xex+A2e; 
- 2(&A, -A:) ’ (7) 

where 

A,(z)=;j-; T(z’)(z-z’)‘dz’, i=o, 1,2. (8) 

In the case of a broad beam and a medium with slab-geometry the solution of (5) 
can be found by the convolution of Eq. (7) [15, 131, but this method is not valid 
in the case of arbitrary heterogeneities. In the next sections, a numerical approxima- 
tion to the solution of (5) for an arbitrary heterogeneous medium will be presented. 
For simplification of the formula we will only consider cases where the distribution 

581/85/Z-II 
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of the electrons is not dependent on y, i.e., when the beam is very large in the 
y-direction and when the heterogeneity structures do not depend on y. The 
extension of the method to the 3-dimensional case will be explained briefly in 
Appendix C. 

3. NUMERICAL SOLUTION 

Although Eq. (1) has been used as the starting point in the derivation of the 
expression of the pencil beam for a slab-geometry, it can be applied also to the 
general case of a broad beam and an arbitrary heterogeneous medium. To obtain 
a numerical calculation scheme in the 2-dimensional case, we return to Eq. (1) and 
neglect the term O(S*), 

F(z+d,x,e)=J+‘ F(~, x - de, e’) ps(e’ + e) de’, (9) 
-w 

where 8 is used for 8, for simplification of the notation, 
For the scattering term we will use the explicit form 

1 Pa(ef + e) = ~ 
J-- { 

ew 
(e-e’)* 

71T6 --3--’ I 
(10) 

The first algorithm, given in [ 131, computes the distribution F at discrete depths zi 
and discrete points x,. It uses the first three directional moments, 

F, = +m 8’F( Z, X, e) de, i=o, 1,2, (11) 
cc 

to approximate the distribution as a function of the direction with 

F(z, X, 0) = -j$ exp { -g} = F,(z, X) qe; 8,2), (12) 

where F,(z, x) is the planar fluence, 

0 = F,(z, x)/F&, x) 

is the mean direction, 

(13) 

IJ* = F2(z, x)/F,,(z, x) - g2 

is the mean square deviation, and 

(14) 

(15) 

As pointed out in [13] the use of only three moments does not in all cases 
approximate the solution of (5) to a satisfactory accuracy. In order to use 
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y1 moments, where n > 3, the distribution as a function of the direction will be 
approximated by a sum of shifted Hermite polynomials A,(& 8, a’) weighted by 
the corresponding Gaussian function G(0; 8, o’), 

F(z, x, 0) = i a,Z?,(B; 8, a’) G(B; 8, a*), (16) 
k=O 

where ak, 8, and C* are functions of z and x. Because of the choice of 0 and g2, the 
parameters a, and a, are equal to zero as will be seen later. For n = 2 Eq. (16) 
reduces to (12). The definition and properties of the shifted Hermite poly- 
nomials @k, which are very similar to those of the normal Hermite polynomials, are 
given in Appendix A. 

The distribution at depth z + 6 is computed from the distribution at depth z by 
performing the convolution in Eq. (9) and by computing the new moments at 
depth z + 6. Substituting (10) and (16) into (9) yields 

F(z+&x,e)= i a,(z,x-SB)S+1 fik(e$,a2)G(e;8,a2)G 
k=O --m 

(17) 

The new symbol p is used to point out that expression (17) cannot be exactly writ- 
ten in the desired form (16). In order to evaluate (17) further, the convolution of 
fik(& 8, o*) G(8; 8, o*) by G(0; 0, 4 6T) is computed by Fourier transform and the 
result is substituted into (17), giving 

Pcz+s, x, e)= i 
[&OakA,( 

e;8,02++ G e;8,&+ 
> ( )1,.,-i (‘*I 

The moments at depth z + 6 are computed from Eq. (18), 

&(z + 6, X) = j + m e5yz + 6, x, e) de 
-m 

=/,~eijoak’k( e;8,c2+T G e$,o”++ de, (19) ) ( ) 
where it must be kept in mind that ak, B, and c* in (19) are functions of x-60 at 
depth z. The numerical evaluation of (19) will be discussed in Section 5. 

Equation (19) gives the moments at depth z + 6 computed from the coefficients 
ak, & and CJ* at depth z. The theorem given in the next section shows that the result 
of Eq. (19) can be used to find a new set of coefficients at depth z + S. We will now 
compute the new coefficients ak, 8, and rr2 at depth z + 6. We first choose &z + 6, r) 
and a*(z + 6, r) as defined by Eq. (13) and (14). This implicitly fixes the function 
G(8; 0, a’). Once this choice is made, the Fourier co-efficients of the series (16) can 
be computed from the moments (19) using the recursion relation derived in the next 
section, 
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(20) 

where 

G,=S’” B’G(B; 8, a*) de (21) -a0 

is given in Appendix B. The values of the first five coefficients are 

a, = F. 

a,=a,=O 

(a2)3’2 
a3=--$71 

(22) 

(23) 

(24) 

(25) 

where y1 and y2 are respectively the skewness and the excess of the distribu- 
tion F(e). 

In this way the COefiCientS ak, 0, and a2 are calculated at depth z + 6 and serve 
as input to the calculation at depth z + 26. Some aspects of the method outlined 
above will be discussed in the next two sections, Then some results will be 
highlighted. 

4. EVALUATION OF THE RECURRENT RELATION (20) 

To derive the recursion relation (20), Eq. (16) is substituted into the definition of 
the moments (11 ), giving 

F,= i akj+-” eifik(e) G(e) de + a, 
k=, -cc 5 +O” eqe) de. (26) -5 

Applying the recursion relation of the fik’s given in Appendix A and partial integra- 
tion of the first term of (26) we find 

F,= i ak j’” ei-lAk~,(e)G(e)de+~, +O” eG(e)de 
k=l --co s -a: 
i-l 

= k;l ak+ 1 j;I 
et- VI,(e) G(e) de + iu, 

+Ki 

e’- *G(e) de 
-00 

+ a0 s +Oc eic(e) de. 
-3c (27) 
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By repeated partial integration we find Eq. (20): 

The next theorem makes a link between the moments given by the relation (19) 
and the ak in the recurrent relation (20). 

THEOREM. Assume that the moments of the function P(6) exist and that the 
development of F(O)/G(tI; 8, ‘T’) in the Fourier series 

F(e)/G(tl; 0, n2) = f a,&(& 8,~‘) 
k=O 

(28) 

is valid; then P(O) and the approximation F(B) given by the truncated series 

F(8) = i akfik(8; 8, a’) G(e; 8, a2) 
k=O 

(29) 

have the same first n moments. 

Let Fi and Fi be the ith moments of F(B) and F(e), respectively. We remark that 

” 
i&(e)= 1 crk,iek, 

k=O 
(30) 

where the gk,; are co-efficients. Then we can deduce that 

i Ctk,iFk=j+m &Fde= i akj’” fi,fi,Gdfj 
k=O -a0 kc0 --m 

k=O 

Thus 

kfOolk,i(F,Fk)=O, i<n 

and the theorem follows. 

5. NUMERICAL EVALUATION OF THE MOMENTS 

(31) 

(32) 

In the numerical implementation we consider a set of nodes (xj, j= I, . . . . m} 
such that we can assume FO to be zero for x <x, and x > x,. These nodes are the 
centers of contiguous intervals [xi - is,, xj + 4SX]. In each interval the parameters 
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uk, 8, and a2 are taken to be constant. In terms of these intervals the Eq. (22) can 
be written as 

F,(z + 6, x) = i joo;;;(.r) i f?a,ifk(O; 8, a’) G(tl; 8, a’) d6, (33) 
j=I I k=O 

where 

x-x,-6,/2 
ej(x)= s 

x-Xj+s,/2 X-XI+,-S,/2 
O,+,(x)= s = 

6 ’ 

(344 

Wb) 

Figure 2 depicts the situation for the calculation in node xj,. 
Because the parameters uk, 8, and o* are constant in the intervals [O,(x), O,+ I(x)] 

we get 

‘k.1 [zi,k(ej+ I(X); fij, cj) -Z,k(ej(x); Qj, a:)], (35) 
j=I k=O 

where 

zi,k(U; 8, 0’) = j” @ri,(e; 8, 02) G(6; 4, c*) de (36) 
0 

is evaluated recursively in Appendix B. 
To evaluate the coefficients in the interval [xi, -is,, xj, + iSX] at depth z + 6 

4 ei (Xi, 1 

4 Oj+l(xj*) 

FIG. 2. Geometric description of the calculation mesh. 
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it would be possible to evaluate the F;s only in the point xi,, but experience has 
shown that in some situations the result is poor, for instance, in combination with 
field divergence. A good estimate of the moments is made by taking their means 
over the interval [xi, - $S,, xj, + $SX] at depth z + 6, 

(37) 

where the evaluation of j:: Z,,(@(x); 8, 0”) dx is also given in Appendix B. 

6. RESULTS 

This numerical method has been implemented in a computer code (FORTRAN) 
running on a PDP-1 l/44 for a maximum of six moments (n = 5). In this section 
some results will be presented. 

Homogeneous Medium 

The analytical solution F(z, x, 0,) of Eq. (5), as well as its moments Fo(z, x), 
F,(z, x), and F*(z, x), has been given in [ 131 for the case in which the scattering 
power T depends on z only. It has been shown [ 131 that already in the particular 
case of a constant T, the solution of (5) is not totally described by a Gaussian func- 
tion. Figure 3 shows the parameters F0 and a2 on the central axis of a parallel beam 
for a constant T. This case is not realistic from a physical point of view but it allows 
an easy comparison to the analytical solution of the Fermi-Eyges equation. In the 
case of the Gaussian approximation (n = 2) the numerical curves obviously deviate 
from the analytical curves. These differences cannot be made smaller by decreasing 
the spatial step sizes. Adding two moments (n = 4) clearly improves the result. It is 
expected that the numerical solution will converge toward the analytical solution; 
however, because of the limitation of the PDP-11/44, it was not possible to com- 
pute the solution for more moments. In this case n = 5 does not further improve the 
result on the central axis because the odd moments of the symmetric distributions 
are zero. 

Heterogeneous Medium 

Figure 4 shows the planar fluence distribution of a broad parallel beam of width 
10 cm crossing an air cavity of cross section 2 x 1 cm* at a depth of 1 cm in water. 
The initial energy of the electrons is 13 MeV. In the calculations, the scattering 
power T at the point (z, x) depends on the material and on the energy of the 
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FIG. 3. Planar fluence distribution F, and mean square deviation u2 (MST) on the central axis of 
an electron beam (width in the x-direction, 4 cm; in the y-direction, cc) impinging on a homogeneous 
medium. The scattering power T(z) is taken to be a constant for all depths, K = 0.1 rad2 cm -‘. This case 
is not realistic from a physical point of view but it allows an easy comparison to the analytical solution 
(- ) of the Fermi-Eyges equation given in [13]. ( - ) is the numerical result for n = 2 and n = 4. 
The two dashed lines are the values of an infinite beam (u2 = Kz/2) and of a pencil beam (u* = Kz/S), 
respectively; they form the asymptotes of the curve for a finite beam with constant T(z). 
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KZ/8 

DEPTH (cm) 

FIG. 3-Continued 

electrons at that point. The decrease of energy is calculated by using the continuous 
slowing-down approximation [ 143. The isolines are expressed as percentages of the 
number of electrons per unit surface at z = 0. The distribution is given for an 
increasing number of moments. From n = 4 the pattern of isolines becomes almost 
stable. Figure 5 shows the distribution for a long cavity (1 x 5 cm*) at a depth of 
1 cm in water. In this case the initial electron energy is 20 MeV. 
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FIG. 4. Planar fluence distribution of a broad beam of width 10 cm crossing an air cavity of cross 
section 2 x 1 cm* at a depth of 1 cm in water. The initial energy of the electrons is 13 MeV. The isolines 
are given in percentages of the value at the surface of the medium (z = 0). Calculation with the method 
presented for n = 2, 3, 4, and 5 and with the pencil beam method. 
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FIG. 5. Planar fluence distribution of a broad beam of width 1Ocm crossing an air cavity of cross 
section 1 x 5 cm* at a depth of 1 cm in water. The initial energy of the electrons is 20 MeV. The isohnes 
are given in percentages of the value at the surface of the medium (z = 0). Calculation with the method 
presented for n = 2 and 5 and with the pencil beam method. 
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7. CONCLUSION 

The results for a homogeneous medium show that the numerical method pre- 
sented probably converges to the solution of the Fermi-Eyges equation when the 
number of angular moments is increased. The results for a heterogeneous medium 
shows a significant influence of the numer of moments up to five or six moments. 

The application of this method to the calculation of the therapeutic dose is still 
in progress. Preliminary results, compared with measured data, have been reported 
elsewhere [16, 173. These results have shown that the addition of an adequate 
calculation of the energy spectrum in each point is important in the case of a 
heterogeneous medium. 

A potential improvment of the numerical method presented is the use of a 
non-Gaussian scattering function ps (Eq. (10)) to take large angle scattering and 
secondary electrons into account. 

APPENDIX A 

The shifted Hermite polynomials are defined by 

A,(e; 0, a’) = (- ‘jk 
G(6; 8, a’) 

DkG(B; 8, CT*), 

where Dk means ak/aek, and 

(e-e)* 
-202 . 

By changing (0-a)/,,/% by t in (A2) we find the relation between the normal 
Hermite polynomial Hk(r) and the shifted Hermite polynomial: 

Ei,(e$, f12)=(2d-k’2fik((6-8)/@). (A3) 

The fi,‘s fulfill the recursion relation 

Like the normal Hermite polynomials, {Ak} forms an orthogonal system relative 
to their weight function G(B; 8, 0’): 

@k, Ak’> = j’,” fik(6) fi,@) G(6) d6 

=o for k’#k Wa 1 

k! 
=(a2)k for k’=k. 
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APPENDIX B 

In this appendix a number of recurrent relations will be given for the calculation 
of 

Z,,(a; 8, a2) = j’ fl’Z?,(e; 8, a2) G(0; 0, a2) dtl tB1) 
0 

G,=l-m O’G(tl; 0, a2) de. (B3) -02 

First, we remark that from definition (Al ), 

Gk(e; 0, a2) G(8; 8, a2) = (- l)k DkG(B; 8, a2). (B4) 

I most cases the recursion relations will be derived by using Eq. (B4) and partial 
integration. 

To compute (Bl) consider 

zj,k(a) = ,- ei( - l)k DkG(B) de = -ai& I(a) G(a) + iz,- ,,k- I(l7). WI 
0 

For the calculation of (B5) we must consider three cases, i < k, i= k, and i> k, 
respectively. 

For the case i < k we must consider as the starting point of (B5) the term with 
index i = 0: 

Z o,k~i(a)=~~(-i)‘-‘Dk-‘G(e)de= -I)k~i~L(a)G(U)+Ej,_i-l(O)G(O). (B6) 

For the case i= k we must consider as the starting point of (B5) the term with 
indices i = 0 and k = 0: 

zo,o(a) = “ G(B) de. (B7) 
0 

Equation (B7) can be computed further using the error function. 
For the case i > k we must consider as the starting point of (B5) the term with 

index k = 0, 

=a 2 j” ei--k-%,(e) c(e) de + 0 ja ei- ‘c(e) de 
0 0 

= -a2a’-kG(a)+ (i-k- 1) a21jPkP2,,(a)+ t?z,&k_ ,,o(a). 038) 
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The starting points of (B8) are Z,,Ja), which is given by (B7) and 

Z,,,(u) = j” BG(8) d8. 039) 
0 

To compute (B2) we perform the transformation 

(.xz-b)/6 
l&k(r) d5. 

(XI - b)/a 
@lo) 

This reduces the problem to the evaluation of 

fi,k= azi,k(~)d~=zi,k~~(a)+i~i-,,k-,(u). s Wl) 
0 

For the calculation of (Bl I), as for the calculation of (B5), we must consider the 
three cases, i < k, i = k, and i > k, respectively. 

For the case i< k we must consider as the starting point of (Bll) the term with 
index i = 0: 

For the case i= k we must consider as the starting point of (Bll) the term with 
indices i = 0 and k = 0: 

fo,ob) = ja Z,,,(5) & = ja je G(O) de 8. 
0 0 0 

(B13) 

Equation (B13) can be computed further using the error function and the relation 

s erf{x} dx=xerf{x]+-!--rPX2. 
& 

(J314) 

For the case i > k we must consider as the starting point of (Bl 1) the term with 
index k=O: 

fi-k,O cU)=/~Zi-k,o(~)& 

= -a2zi- k,O(a)+(i-k- l)a2~i~k-2,0(a)+Bii~k-,,0(a). (B15) 

The initial values of (B15) are i,,,(u) and i,,,(u), which are given by (B13) and 

&,a(4 = ja Z,,,(t) 4 = ja j' We) de 4. 
0 0 0 

W6) 
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The expression (B3) can be calculated by partial integration, 

Gi=a2(i- l)G,~,+&~,, 

for which the first two terms are 

Go=1 

and 

G,=t?. 

W7) 

0318) 

W9) 

APPENDIX C 

In the 3-dimensional case, the distribution F is a function of the depth z, 
the place in the xy-plane, r = (x, y), and the direction, w = (O,, 0,). The transfer 
equation (9) then becomes 

F(z + 6, r, co) = iQ F(z, r - hw, 0’) pa(o’ -+ co) do’, (Cl 1 

where 

(C2) 

In the 3-dimensional case, the distribution F will be approximated by 

F(z,r,w)= i i akk.fikk~(o; 0, a’) G(w; 0, a’), (C3) 
k=O k’=O 

where a,&‘, 0, and a2 are functions of z and r. The functions G(w; 0, a’) is in this 
case a 2-dimensional Gaussian, 

(e,-Q,)2 - 
2a2 

=G(e,; 6, a2) G(BV; 8,, a’), (C4) 

and the pdynOmia1 fi!#(W; 0, a’) is the product of two Hermite polynomials, 

fikks (u; 6, a’) = 
(- l)k+k’ 

G(o; W, a’) 
Di, Dii,G(o; 0, a2) 

=fik(e,; 8,, a-‘) ci,@$ By, a*). (C5) 
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The directional moments are given by 

((3) 

Because of the separability of the functions used in the approximation (C2), the 
algebra used in Section 3 can also be applied in the 3-dimensional case. For exam- 
ple, the relation between the moments Fii and the coefficients ukk will become 

Fii, = i i i! 
i’! 

k=, k,=, (i-k)! (i’-k’)! 
Gi-k(BI, O*) G,,-k’(Byy 0’) a/&‘. cc71 
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